
Supporting Imprecision in Multidimensional
Databases Using Granularities

Torben Bach Pedersen
�

Christian S. Jensen � Curtis E. Dyreson �
�

Center for Health Information Services, Kommunedata,
P.O. Pedersens Vej 2, DK-8200 Århus N, Denmark,

email: tbp@kmd.dk

� Department of Computer Science, Aalborg University,
Fredrik Bajers Vej 7E, DK–9220 Aalborg Ø, Denmark,

email: � csj,curtis � @cs.auc.dk
May 4, 1999

Abstract

On-Line Analytical Processing (OLAP) technologies are being used widely for business-data
analysis, and these technologies are also being used increasingly in medical applications, e.g.,
for patient-data analysis. The lack of effective means of handling data imprecision, which oc-
curs when exact values are not known precisely or are entirely missing, represents a major
obstacle in applying OLAP technology to the medical domain, as well as many other domains.
OLAP systems are mainly based on a multidimensional model of data and include constructs
such as dimension hierarchies and granularities. This paper develops techniques for the han-
dling of imprecision that aim to maximally reusing these already existing constructs. With
imprecise data now available in the database, queries are tested to determine whether or not
they may be answered precisely given the available data; if not, alternative queries that are un-
affected by the imprecision are suggested. When a user elects to proceed with a query that is
affected by imprecision, techniques are proposed that take into account the imprecision in the
grouping of the data, in the subsequent aggregate computation, and in the presentation of the
imprecise result to the user. The approach is capable of exploiting existing multidimensional
query processing techniques such as pre-aggregation, yielding an effective approach with low
computational overhead and that may be implemented using current technology. The paper
illustrates how to implement the approach using SQL databases.

CONTENTS 1

Contents

1 Introduction 2

2 Motivation 4

3 Data Model and Query Language Context 6
3.1 The Data Model . 7
3.2 The Algebra . 10

4 Handling Imprecision 11
4.1 Overview of Approach . 12
4.2 Alternative Queries . 13

5 Handling Imprecision in Query Evaluation 16
5.1 Imprecision in Grouping . 16
5.2 Imprecision in Computations . 18
5.3 Presenting the Imprecise Results . 21

6 Using Pre-aggregated Data 21

7 Conclusion and Future Work 24

A SQL Implementation 27

1 INTRODUCTION 2

1 Introduction

On-Line Analytical Processing (OLAP) [7] has attracted much interest in recent years, as busi-
ness managers attempt to extract useful information from large databases in order to make better
informed management decisions. OLAP tools focus on providing fast answers to ad-hoc queries
that aggregate large amounts of detail data. Recently, the use of OLAP tools have spread to the
medical world, where physicians use the tools to understand the data associated with patients.
For example, the largest provider of healthcare IT in Denmark, Kommunedata, spends signifi-
cant resources on applying OLAP technology to medical applications. The use of OLAP tools
in the medical domain places additional emphasis on challenges that OLAP technology tradi-
tionally has not handled well, such as the handling of imprecise data.

Traditional data models, including the ER model [5] and the relational model, do not provide
good support for OLAP applications. As a result, new data models that support a multidimen-
sional view of data have emerged. These multidimensional data models typically categorize
data as being measurable business facts (measures) or dimensions, which are mostly textual
and characterize the facts. For example, in a retail business, products are sold to customers at
certain times, in certain amounts, at certain prices. A typical fact would be a purchase, with the
amount and price as the measures, and the customer purchasing the product, the product being
purchased, and the time of purchase being dimensions.

If multidimensional databases are to be used for medical OLAP applications, it is neces-
sary that to handle the “imperfections” that almost inevitable occur in the data. Some data
values may be missing, while others are imprecise to varying degrees, i.e., in multidimensional
database terms, they have varying granularities. The problem of varying granularities surfaces
in OLAP applications for several different reasons. Some data, such as the data in the case
study presented in Section 2, has naturally varying granularities, but the problem also often
occur when combining data from different organizations. Current OLAP tools and techniques
assume that the data has a uniform granularity and that any granularity variances are handled
in the data cleansing process, prior to admitting the data to the OLAP database. This is not a
realistic assumption as mapping all data to a common granularity will introduce mapping errors
and hide the true quality of the data from the user, possibly leading to erroneous conclusions
based on the OLAP queries. Thus, it is very attractive to be able to handle all the occurring
forms of imperfect data in order to give the physicians as meaningful and informative answers
as possible to their OLAP queries.

The area of “imperfect information” has attracted much attention in the scientific litera-
ture [18]. We have previously compiled a bibliography on uncertainty management [9] that de-
scribes the various approaches to the problem. Considering the amount of previous work in the
area, surprisingly little work has addressed the problem of aggregation of imprecise data, which
is the focus of this paper. Aggregation of imprecise data has been examined in the context of
both possibilistic (fuzzy) databases [24] and (to a lesser extent in) probabilistic databases [11],
but not to date in a data warehousing or multidimensional model. Statistical techniques have
also been applied to the problem of managing uncertain information in databases [26], and in
this paper, we similarly use tools from statistics to handle imprecise aggregate data.

The approach presented in this paper aims to maximally re-use existing concepts from mul-

1 INTRODUCTION 3

tidimensional databases to also support imprecise data. The approach allows the re-use of exist-
ing query processing techniques such as pre-aggregation for handling the imprecision, resulting
in an effective solution that can be implemented using current technology, which is important
for the practical application of this research. It is shown how to test if the underlying data is pre-
cise enough to give a precise result to a query; and if not, an alternative query is suggested, that
can be answered precisely. If the physician1 accepts getting an imprecise result, imprecision is
handled as well in the grouping of data as in the actual aggregate computation.

A number of approaches to imprecision exist that allow us to characterize this paper’s con-
tribution. It is common to distinguish between imprecision, which is a property of the content
of an attribute value, and uncertainty, which concerns the degree of truth associated with an
attribute value, e.g., it is 100% certain that the patient’s age is in the (imprecise) range 20–30
vs. it is only 85% certain that the patient’s age is (precisely) 25. Our work concerns only impre-
cision. The most basic form of imprecision is missing or applicable null values [6], which allow
unknown data to be captured explicitly. Multiple imputation [22, 3] is a technique from statis-
tics, where multiple values are imputed, i.e., substituted, for missing values, allowing data with
some missing values to be used for analysis, while retaining the natural variance in the data. In
comparison with our approach, multiple imputation handles only missing values, not imprecise
values, and the technique does not support efficient query processing using pre-aggregated data.
The concept of null values has been generalized to partial values, where one of a set of possible
values is the true value. Work has been done on aggregation over partial values in relational
databases [4]. Compared to our approach, the time complexity of the operations is quite high,
i.e., at least �����
	���
�� , where � is the number of tuples, compared to the ��������������� complexity
of our solution. Additionally, all values in a partial value have the same weight, and the use of
pre-aggregated data is not studied. Fuzzy sets [28] allows a degree of membership to be associ-
ated with a value in a set, and can be used to handle both uncertain and imprecise information.
The work on aggregation over fuzzy sets in relational databases [23, 24] allows the handling
of imprecision in aggregation operations. However, the time complexity is very high, i.e., ex-
ponential in the number of tuples, and the issue of pre-aggregation has not been studied. The
concept of granularities [2] has been used extensively in temporal databases for a variety of
purposes, including the handling of imprecision in the data [10]. However, aggregation of im-
precise temporal data remains to be studied. In the area of multidimensional databases, only the
work on incomplete data cubes [8] has addressed the issue of handling imprecise information.
Compared to this paper’s approach, the incomplete data cubes have the granularity of the data
fixed at schema level, rather than the instance level. Additionally, imprecision is only handled
for the grouping of data, not for the aggregate computation.

To our knowledge, imprecision in the actual aggregate result for multidimensional databases
has not been supported previously, and in general no one has studied the use of pre-aggregated
data for speeding up query processing involving imprecision. Also, the consequent use of the
multidimensional concept of granularities in all parts of the approach, we believe is a novel
feature.

The paper is structured as follows. Section 2 motivates our approach by presenting a real-

1We use the term “physician” for the user of the system throughout the paper, although the approach presented
is general and not limited to the medical domain.

2 MOTIVATION 4

world case study from the clinical world and using it to discuss problems that might arise due
to imprecision in the data. Section 3 defines the multidimensional data model and associated
query language used as the concrete context for the paper’s contribution. Section 4 introduces
our approach and shows how to suggest alternative queries if the data is not precise enough.
Section 5 shows how to handle imprecision in the grouping of data and in the computation
of the aggregate results, and how to present the imprecise result to the physician. Section 6
discusses the use of pre-aggregated data for query evaluation involving imprecision. Section 7
summarizes the article and points to future research topics. Appendix A describes how to
implement the approach using SQL databases.

2 Motivation

In this section, we first present a real-world case study from the domain of diabetes treatment.
Second, we discuss the queries physicians would like to ask and the problems they encounter
due to data imprecision.

The case study concerns data on diabetes patients from a number of hospitals, their asso-
ciated diagnoses, and their blood sugar levels. The goal is to investigate how the blood sugar
levels vary among diagnoses. An ER diagram illustrating the underlying data is seen in Figure 1.

Diagnosis

Diagnosis

Family

Is part of

(1,n)
(1,1)

*
Code

* Text

Patient

* Name

* SSN

* HbA1c%

* Precision

(0,1)

Has

Low-level

Diagnosis

Diagnosis

D

(0,n)

Figure 1: ER Schema of Case Study

The most important entities are the patients. For a patient, we record Name and Social Secu-
rity Number (SSN). The HbA1c% and Precision attributes are discussed later. Each patient may
have one diagnosis. The diagnosis may be missing for some patients, due to incomplete registra-
tions in the computer by the hospital staff. When registering diagnoses for patients, physicians
often use different levels of granularity. For example, for some patients, some physicians will
use the very precise diagnosis “Insulin dependent diabetes,” while the more imprecise diagno-
sis “Diabetes,” which covers a wider range of patient conditions, corresponding to a number of
more precise diagnoses, will be used for other patients. In terms of the ER diagram in Figure 1,

2 MOTIVATION 5

we model this by having a relationship between patients and the supertype “Diagnosis.” The
Diagnosis type has two subtypes, corresponding to different levels of granularity, the low-level
diagnosis and the diagnosis family. Examples of these are the above-mentioned “Insulin depen-
dent diabetes” and “Diabetes,” respectively. The higher-level diagnoses are both (imprecise)
diagnoses in their own right, but also function as groups of lower-level diagnoses. Thus, the
diagnosis hierarchy groups low-level diagnoses into diagnosis families, each of which consists
of 2–20 related diagnoses. Each low-level diagnosis belongs to exactly one diagnosis family.
For example, the diagnosis “Insulin dependent diabetes” is part of the family “Diabetes.”

For diagnoses, we record an alphanumeric code and a descriptive text. The code and text
are usually determined by a standard classification of diseases, e.g., the World Health Organi-
zation’s International Classification of Diseases (ICD-10) [27], but we also allow user-defined
diagnoses and groups of diagnoses.

One of the most important measurements for diabetes patients is HbA1c% [14], which indi-
cates the long-time blood sugar level, providing a good overall indicator of the patient’s status
during the recent months. However, sometimes this value is missing in the data that we have
available for analysis. This may be because the physician simply did not measure the HbA1c%,
or the value may not have been registred in the computer. Furthermore, the HbA1c% is mea-
sured using two different methods at the hospitals. Over time, the hospitals change the mea-
surement method from an old, imprecise method to a new and precise method. This leads to a
difference in the precision of the data. Thus, we also record the precision of the data, as precise
or imprecise. When the value is missing, we record the precision as inapplicable.

In order to list some example data, we assume a standard mapping of the ER diagram to
relational tables, i.e., one table per entity type and one-to-many relationships handled using
foreign keys. We also assume the use of surrogate keys, named ID, with globally unique values.
As the two subtypes of the Diagnosis type do not have any attributes of their own, both are
mapped to a common Diagnosis table. The “Is part of” relationship is mapped to the “Grouping”
table.

The data consists of three patients and their associated diagnoses and HbA1c% values. The
resulting tables are shown in Table 1 and will be used throughout the paper.

The primary users are physicians that use the data to acquire important information about the
overall state of the patient population. To do so, they issue queries that aggregate the available
data in order to obtain high-level information. We use the case study to illustrate the kind of
challenges faced by the physicians and addressed by this paper.

It is important to keep the HbA1c% as close to normal as possible, as patients might collapse
or get liver damage if the HbA1c% is too low or too high, respectively. Thus, a typical query is
to ask for the average HbA1c% grouped by low-level diagnosis. This shows the differences in
the blood sugar level for the different patient groups, as determined by the diagnoses, indicating
which patients will benefit the most from close monitoring and control of the HbA1c%.

However, as the example data shows, there are some problems in answering this query.
First, one of the patients, Jim Doe, is diagnosed with “Diabetes,” which is a diagnosis family.
Thus, the diagnosis is not precise enough to determine in which group of low-level diagnoses
Jim Doe should be counted. Second, the HbA1c% values themselves are imprecise. Only John
Doe has a value obtained with the new, precise measurement method, while Jane Doe has only

3 DATA MODEL AND QUERY LANGUAGE CONTEXT 6

ID Name SSN HbA1C% Precision
0 Jim Doe 11111111 Unknown Inapplicable
1 John Doe 12345678 5.5 Precise
2 Jane Doe 87654321 7 Imprecise

Patient Table

PatientID DiagnosisID
0 5
1 3
2 4

Has Table

ID Code Text
3 E10 Insulin dependent diabetes
4 E11 Non insulin dependent diabetes
5 E1 Diabetes

Diagnosis Table

ParentID ChildID
5 3
5 4

Grouping Table

Table 1: Data for the Case Study

an imprecise value and Jim Doe’s HbA1c% is unknown.
This imprecision in the data must be communicated to the physicians so that the level of

imprecision can be taken into account when interpreting the query results. This helps to en-
sure that the physicians will not make important clinical decisions on a “weak” basis. Several
strategies are possible for handling the imprecision. First, the physicians may only be allowed
to ask queries on data that is precise enough, e.g., the grouping of patients must be by diagno-
sis family, not low-level diagnosis. Second, the query can return an imprecise result. Possible
alternatives to this can be to include in the result only what is known to be true, everything that
might be true, and a combination of these two extremes. The paper presents an approach to
handling imprecision that integrates both the first and the second strategy, i.e., only “precise
enough” data or imprecise results, and provides all the three above-mentioned alternatives for
returning imprecise results.

3 Data Model and Query Language Context

This section defines the concepts needed to illustrate our approach to handling imprecision.
First, we define an extended multidimensional data model that serves as the context for formu-
lating the approach. Only the parts of the model that are necessary for the subsequent definitions
will be given. The full model is described elsewhere [20]. Second, we describe the algebra as-
sociated with the model. Third, we define the additional concepts which are necessary for our
approach, in terms of the model.

We have chosen to use the presented data model to illustrate our approach, rather than
using “standard” models such as star or snowflake schemas, in order to present our approach
more clearly. There is several reasons for this choice. First, the presented model allows for a
precise, formal definition of multidimensional concepts such as hierarchies and granularities, as
opposed to star and snowflake schemas, which only defines these concepts informally. Second,
the presented model allows us to map facts directly to dimension values “higher up” in the

3 DATA MODEL AND QUERY LANGUAGE CONTEXT 7

dimension hierarchy, a feature which our approach uses to capture imprecision. This is not
directly possible in star or snowflake schemas, but it can be emulated in both of these models,
as well as in other multidimensional models. Thus, it it still possible to use our approach with
existing multidimensional tools and techniques.

3.1 The Data Model

For every part of the data model, we define the intension and the extension, and give an illus-
trating example.

An n-dimensional fact schema is a two-tuple ���������! "� , where � is a fact type and #�$&%(' �*)+�-,��&.�./�*�10 is its corresponding dimension types.

Example 1 In the case study we will have Patient as the fact type, and Diagnosis and HbA1c%
as the dimension types. The intuition is that everything that characterizes the fact type is con-
sidered to be dimensional, even attributes that would be considered as measures in other multi-
dimensional models.

A dimension type
%

is a four-tuple �324�&5768�&9�68�;:�6+� , where 2<� $ 2>=&�@?A��,��&.�./��BC0 are the
category types of

%
, 5D6 is a partial order on the 2E= ’s, with 9�6GFH2 and :�6�FH2 being the

top and bottom element of the ordering, respectively. Thus, the category types form a lattice.
The intuition is that one category type is “greater than” another category type if members of the
former’s extension logically contain members of the latter’s extension, i.e., they have a larger
element size. The top element of the ordering corresponds to the largest possible element size,
that is, there is only one element in its extension, logically containing all other elements.

We say that 2E= is a category type of
%

, written 2(=IF % , if 2J=IFK2 . We assume a functionLNM*OQPSR 2UTV WYX that gives the set of immediate predecessors of a category type 2Z= .
Example 2 Low-level diagnoses are contained in diagnosis families. Thus, the Diagnosis di-
mension type has the following order on its category types: :\['^]`_Qa;b�cd'^c = Low-level Diagnosise Diagnosis Family e 9D['^]�_Qa&b�cd'^c . We have that

L�MfOQP � Low-level Diagnosis �g� $
Diagnosis

Family 0 . Precise values of HbA1c% are contained in imprecise values2, e.g., the precise value
“5.3” is contained in the imprecise value “5”, which covers the range of (precise) values [4.5–
5.4]. Thus, other examples of category types are Precise and Imprecise from the HbA1c%
dimension type. Figure 2, to be discussed in detail later, illustrates the dimension types of the
case study.

A category h4= of type 2J= is a set of dimension values i . A dimension j of type
% �� $ 2>=&0k�;5�68�&9l68�&:�61� is a two-tuple jm�n��h7�&5\� , where ho� $ h8=Y0 is a set of categories h8= such

that pEqfr O ��h4=s�l�n2J= and 5 is a partial order on t+=;hu= , the union of all dimension values in the
individual categories.

2The precise measurement method gives us results with one decimal point, while the imprecise method gives
us only whole numbers.

3 DATA MODEL AND QUERY LANGUAGE CONTEXT 8

The definition of the partial order is: given two values iwv���i
 then i;vx5�i
 if i;v is logically
contained in i
 . We say that h4= is a category of j , written h8=lFyj , if h4=zF{h . For a dimension
value i , we say that i is a dimensional value of j , written i7Fyj , if i7FUtu=&hu= .

We assume a partial order 5\| on the categories in a dimension, as given by the partial order5�6 on the corresponding category types.
The category :D[in dimension j contains the values with the smallest value size. The

category with the largest value size, 9}[, contains exactly one value, denoted 9 . For all valuesi of the categories of j , ig5m9 . Value 9 is similar to the ALL construct of Gray et al. [12].
We assume that the partial order on category types and the function

LNM*OQP
work directly on

categories, with the order given by the corresponding category types.

Example 3 In our Diagnosis dimension we have the following categories, named by their type.
Low-level Diagnosis =

$�~ �!�(0 , Diagnosis Family =
$�� 0 , and 9}['^]`_Qa;b�cd'^c � $ 9�0 . The values in

the sets refer to the ID field in the Diagnosis table of Table 1. The partial order 5 is given by the
Grouping table in Table 1. Additionally, the top value 9 is greater than, i.e., logically contains,
all the other diagnosis values.

Let � be a set of facts, and jm��� $ h8=;0k�&5x� a dimension. A fact-dimension relation between� and j is a set ��� $ �@����i��*0 , where ��FK� and iIF�t1=&hu= . Thus � links facts to dimension
values. We say that fact � is characterized by dimension value i , written �<� i , if �Zi�v�Fj��Q�����si&v*��F��-��i;vI5�i�� . We require that �1��Fn�����ZigFot�=&hu=\�Q�����siw��F��x�!� ; thus we do
not allow missing values. The reasons for disallowing missing values are that they complicate
the model and often have an unclear meaning. If it is unknown which dimension value a fact �
is characterized by, we add the pair �@���&9\� to � , thus indicating that we cannot characterize �
within the particular dimension.

Example 4 The fact-dimension relation � links patient facts to diagnosis dimension values as
given by the Has table from the case study. We get that ��� $

(0,5), (1,3), (2,4) 0 . Note that we
can relate facts to values in higher-level categories, e.g., fact 0 is related to diagnosis 5, which
belongs to the Diagnosis Family category. Thus, we do not require that i belongs to :����������;���d��� ,
as do other multidimensional data models. This feature will be used later to explicitly capture
the different granularity in the data. If no diagnosis is known for patient 1, we would have added
the pair �Q,��&9\� to � .

A multidimensional object (MO) is a four-tuple � � ���D�*�N�*j¡�¢�x� , where ���£�¤���! ¥�$&%(' 0�� is the fact schema, �o� $ �10 is a set of facts � where pEqfr O �@���8�<� , jm� $ j ' �*)u��,��&.�./�*�10
is a set of dimensions where p(q*r O ��j ' �¦� %('

, and � � $ � ' �*)�� ,§�&./.��*�+0 is a set of fact-
dimension relations, such that ��)!�!�@����i��¨F¦� 'ª© �¦FU�«���Zhu=lFyj ' �¬iDF{hu=s�!� .
Example 5 For the case study, we get a four-dimensional MO � � ���D�*�N�*j¡�¢�x� , where�­�£� Patient,

$
Diagnosis, HbA1c% 0�� and ��� $�® �&,��*W>0 . The definition of the diagnosis di-

mension and its corresponding fact-dimension relation was given in the previous examples. The
HbA1c% dimension has the categories Precise, Imprecise, and 9�¯�°�±�²�³¤´ . The Precise category
has values with one decimal point, e.g., “5.5”, as members, while the Imprecise category has

3 DATA MODEL AND QUERY LANGUAGE CONTEXT 9

integer values. The values of both categories fall in the range [2–12]. The partial order on the
HbA1c% dimension groups the values precise values into the imprecise in the natural way, e.g.,�(. � 5 � and

� .µ�"5 � (note that 5 denotes logical inclusion, not less-than-or-equal on numbers).
The fact-dimension relation for the HbA1c% dimension is: �
 � $ � ® �&9\�*�&�Q,�� � . � �*�&�@WJ��¶§�*0 . The
Name and SSN dimensions are simple, i.e., they just have a : category type, Name respec-
tively SSN, and a 9 category type. We will refer to this MO as the Patient MO. A graphical
illustration of its schema is seen in Figure 2.

Low-level Diagnosis =
 ⊥

Diagnosis

Family

⊥

Diagnosis

Patient

HbA1c%

⊥

Precise =

Imprecise

⊥
Name =
 ⊥

⊥

Name
 SSN

⊥

SSN =
⊥

Figure 2: Schema of the Case Study

To summarize the essence of our model, the facts are objects with separate identity. Thus,
we can test facts for equality, but we do not assume an ordering on the facts. The combination
of the dimension values that characterize the facts in an MO do not constitute a “key” for the
MO. Thus, we may have “duplicate values,” in the sense that several facts may be characterized
by the same combination of dimension values. But the facts of an MO is a set, so we do not
have duplicate facts in an MO.

To handle the imprecision, we need an additional definition.

For a dimension value i such that i�F<h = , we say that the granularity of i is h = . For a fact� such that �@����i��7F·� ' and iIF<h = , we say that the granularity of � is h = . Dimension values
in the : category is said to have the finest granularity, while values in the 9 category has the
coarsest granularity.

For dimension j��G��h7�&5\� , we assume a function ¸D[R j�TV h , that gives the granularity
of dimension values. For an MO � �¹���D�*�N�*j¡�¢�x� , where j ' �¹�¬h ' �&5 ' � , we assume a family
of functions ¸�º�» R �oTV h ' �u)u��,��&.�./�*� , each giving the granularities of facts in dimension j ' .

3 DATA MODEL AND QUERY LANGUAGE CONTEXT 10

3.2 The Algebra

When handling imprecision, it is not enough to record the imprecision of the data itself. We
also need to handle imprecision in the queries performed on the data. Thus, we need a precise
specification of the queries that can be performed on the data. To this end, we define an algebraic
query language on the multidimensional objects just defined. The focus of this paper is on
aggregation, so we will only give the definition of the operator used for aggregation. The
other operators of the algebra are close to the standard relational algebra operators, and include
selection, projection, rename, union, difference, and identity-based join [20]. The algebra is at
least as powerful as Klug’s [16] relational algebra with aggregation functions [20].

For the aggregation operator definition, we need a preliminary definition. We define ¼ M!½k¾ r
that groups together the facts in an MO characterized by the same dimension values together.
Given an n-dimensional MO, � �¹���D�*�N�*j�� $ j ' 0k�*�n� $ � ' 0��*�*)+�¹,§�&./.��*� , a set of categoriesh � $ h '¡¿ h ' FÀj ' 0k�*)S� ,§�&./.��*� , one from each of the dimensions of � , and an n-tuple�¬i;v��&.�./��i a � , where i ' F�h ' �*)S� ,§�&./.��*� , we define ¼ M!½k¾ r as: ¼ MQ½k¾ rª��i&v��&.�./��i a �g� $ � ¿ �ÁF�«�����¹vÂi&vu�¦.�.w�Ã�"� a i a 0 . We can now define the aggregate formation operator formally.

The aggregate formation operator is used to compute aggregate functions on the MO’s. For
notational convenience and following Klug [16], we assume the existence of a family of aggre-
gation functions Ä that take some B -dimensional subset

$ j '^Å �;././�¢j '^Æ 0 of the � dimensions as
arguments, e.g., Ç8ÈªÉ ' sums the) ’th dimension and Ç8ÈªÉ ' = sums the) ’th and ? ’th dimensions.

Given an n-dimensional MO, � , a dimension j a&Ê v of type
%(a&Ê v , a function, Ä R W º TV j a;Ê v

(the function Ä “looks up” the required data for the facts in the relevant fact-dimension relations,
e.g., Ç8ÈªÉ ' finds its data in fact-dimension relation � '), and a set of categories h ' F<j ' �*)7�,��&.�./�*� , we define aggregate formation, Ë , as:

ËÍÌ�j a;Ê vw��ÄÎ��hÍv&�&./.���h a&Ï ���o�u�-���ÂÐÑ�*�xÐ��*j�Ðd�*��Ð/�¢�
where

�ÂÐ(�¹�¤�"Ð��! �Ð3�¢�!�IÐ(�<W&ÒN�! �Ð�� $&% Ð' �*)+�¹,§�&./.��*�+0Ât $&%(a&Ê vw0k� % Ð' �-�32ªÐ' �&5lÐ6*» �&:�Ð6¢» �&9�Ð6¢» �*�
2ªÐ' � $ 2 ' =DF %('8¿ pEqfr O �¬h ' �45�6*»�2 ' =;0k�&5lÐ6*» �-5 6*»¤Ó Ô�Õ» �&:lÐ6*» �mpEqfr O �¬h ' �¢�&9�Ð6¢» �¹9l6*»��
� Ð � $ ¼ MQ½k¾ r
�¬i v �&.�./��i a � ¿ �¬i v �&./.���i a �ÍF{h v�Ö ./. Ö h a �K¼ M!½k¾ rª�¬i v �&./.���i a �D×�HØ>0k�

j Ð � $ j Ð' �*)u�n,§�&./.��*�+0Nt $ j a;Ê v�0k�*j Ð' �¹�¬h Ð' �&5 Ð' �¢��h Ð' � $ h Ð' = F¦j 'Í¿ pEqfr O ��h Ð' = �ÍF¡2 Ð' 0k�
5�Ð' ��5 ' Ó Ù Õ» �*��ÐZ� $ ��Ð' �¢)+�¹,��&.�./�*�10Ât $ ��Ða;Ê v 0k�

� Ð' � $ ��� Ð ��i Ð' � ¿ �Î�¬i;vs�&./.���i a �8F{hÍv Ö ./. Ö h a �@� Ð �À¼ M!½k¾ rª��i&vs�&./.���i a �ª�g� Ð Fy� Ð �¦i ' �ni Ð' �*0k� and

� Ða;Ê v ��tÛÚÝÜ Å!ÞàßàßàÞ Ü¤á�âdã | ÅQäåßàß�ä | á $ �&¼ M!½k¾ rª�¬i v �&./.���i a �*�¬ÄÎ�;¼ M!½k¾ rª�¬i v �;././�si a �!�!� ¿ ¼ MQ½k¾ rª��i v �&.�./��i a �D×�nØ>0
Thus, for every combination ��i�vs�&./.���i a � of dimension values in the given “grouping” cate-

gories, we apply Ä to the set of facts
$ �+0 , where the � ’s are characterized by ��i�vs�&./.���i a � , and

place the result in the new dimension j a;Ê v . The facts are of type sets of the argument fact

4 HANDLING IMPRECISION 11

type, and the argument dimension types are restricted to the category types that are greater than
or equal to the types of the given “grouping” categories. The dimension type for the result is
added to the set of dimension types. The new set of facts consists of sets of the original facts,
where the original facts in a set share a combination of characterizing dimension values. The
argument dimensions are restricted to the remaining category types, and the result dimension is
added. The fact-dimension relations for the argument dimensions now link sets of facts directly
to their corresponding combination of dimension values, and the fact-dimension relation for the
result dimension links sets of facts to the function results for these sets.

Example 6 We want to know the number of patients in each diagnosis family. To do so, we
apply the aggregate-formation operator to the “Patient” MO with the Diagnosis Group category
and the 9 categories from the other dimensions. The aggregate function Ä to be used is Set-
Count, which counts the number of members in a set. The resulting MO has five dimensions, but
only the Diagnosis and Result dimensions are non-trivial, i.e., the remaining three dimensions
contain only the 9 categories. The set of facts is ��� k�® �&,��¢WJ0k0 . The Diagnosis dimension is
cut, so that only the part from Diagnosis Family and up is kept. The result dimension groups
the counts into two ranges: “0–2” and “ æ 2”. The fact-dimension relation for the Diagnosis
dimension links the sets of patients to their corresponding Diagnosis Family. The content is:�7v"� $ � $�® �&,§�*WJ0k� � �*0 , meaning that the set of patients

$�® �&,§�*WJ0 is characterized by diagnosis
family

�
. The fact-dimension relation for the result dimension relate the group of patients to

the count for the group. The content is: � 	 � $ � $�® �&,§�*WJ0k� ~ �*0 , meaning that the result of Ä on
the set

$�® �&,§�*WJ0 is
~
. A graphical illustration of the MO, leaving out the trivial dimensions for

simplicity, is seen in Figure 3.

{0,1,2}

5

⊥

Diagnosis

dimension

Result

 dimension

⊥

2
 3
1

...

0-2
 >2

Set-of-Patient

Diagnosis

Family
 Count

Range

0

Figure 3: Resulting MO for Aggregate Formation

4 Handling Imprecision

We now describe our approach to handling imprecision in multidimensional data models. We
start by giving an overview of the approach, and then describe how alternative queries may be

4 HANDLING IMPRECISION 12

used when the data is not precise enough to answer queries precisely, i.e., when the data used
to group on is registered at granularites coarser than the “grouping” categories.

4.1 Overview of Approach

Along with the model definition, we presented how the case study would be handled in the
model. This also showed how imprecision could be handled, namely by mapping facts to di-
mension values of coarser granularities when the information was imprecise, e.g., the mapping
to 9 when the diagnosis is unknown. The HbA1c% dimension generalizes this approach, as
several precise measurements are contained in one imprecise measurement. In turn, several
imprecise measurements are contained in the 9 (unknown) value. Thus, the approach uses
the different levels of the granularity already present in multidimensional data models to also
capture imprecision in a general way. An illustration of the approach, showing how the possi-
ble spectrum of imprecision in the data is captured using categories in a dimension, is seen in
Figure 4.

Most imprecise = Unknown =

Very imprecise

Most precise =

⊥

Very precise

⊥

Figure 4: The Spectrum of Imprecision

The approach has a nice property, provided directly by the dimensional “imprecision” hi-
erarchy described above. When the data is precise enough to answer a query, the answer is
obtained straight away, even though the underlying facts may have varying granularities. For
example, the query from Example 6 gives us the number of patients diagnosed with diagnoses
in the Diabetes family, even though two of the patients have low-level diagnoses, while one is
diagnosed directly with a Diabetes family. In this case, the data would not be precise enough to
group the patients by Low-level Diagnosis.

Our general approach to handling a query starts by testing if the data is precise enough to
answer the query, in which case the query can be answered directly. Otherwise, an alternative
query is suggested. In the alternative query, the categories used for grouping are coarsened
exactly so much that the data is precise enough to answer the (alternative) query. Thus, the al-
ternative query will give the most detailed precise answer possible, considering the imprecision

4 HANDLING IMPRECISION 13

in the data. For example, if the physician was asking for the patient count grouped by low-level
diagnosis, the alternative query would be the patient count grouped by diagnosis family.

If the physician still wants to go ahead with the original query, we need to handle the im-
precision explicitly. Examining our algebra, we see that imprecision in the data will only affect
the result of two operators, namely selection and aggregate formation (the join operator tests
only for equality on fact identities, which are not subject to imprecision). Thus, we need only
handle imprecision directly for these two operators; the other operators will just “pass on” the
results containing imprecision untouched. However, if we can handle imprecision in the group-
ing of facts, ordinary OLAP style “slicing/dicing” selection is also handled straightforwardly,
as slicing/dicing is just selection of data for one of a set of groups. Because our focus is on
OLAP functionality, we will not go into the more general problem of imprecision in selections,
but refer to the existing literature [18].

Following this reasoning, the general query that we must consider is:ËÂÌçhÍv��&.�./��h a �*j a;Ê v��¬Ä Ï �@�o� , where � is an � -dimensional MO, h�v&�&./.���h a are the “grouping”
categories, j a;Ê v is the result dimension, and Ä is the aggregation function. The evaluation of
the query proceeds (logically) as follows. First, facts are grouped according to the dimension
values in the categories h�v��&.�./��h a that characterize them. Second, the aggregate function Ä is
applied to the facts in each group, yielding an “aggregate result” dimension value in the result
dimension for each group. The evaluation approach is given by the pseudo-code below. The
text after the “%” sign are comments.

Procedure EvalImprecise(è , é) % è is a query, é is an MO.
if PreciseEnough(è , é) then Eval(è , é) % if data is precise enough, use normal evaluation
else è Ð>ê Alternative(è , é) % suggest alternative query

if è Ð is accepted then Eval(è Ð , é) % use normal evaluation for alternative query
else

Handle Imprecision in Grouping for è
Handle Imprecision in Aggregate Computation for è
Return Imprecise Result of è

end if
end if

Our overall approach to handling the imprecision in all phases will be to use the granularity
of the data, or measures thereof, to represent the imprecision in the data. This allows for a both
simple and efficient handling of imprecision.

4.2 Alternative Queries

The first step in the evaluation of a query is to test whether the underlying data is precise enough
to answer the query. This means that all facts in the MO must be linked to categories that are

4 HANDLING IMPRECISION 14

“less-than-or-equal” to the “grouping” categories in the query, e.g., if we want to group by Low-
level Diagnosis, all fact-dimension relations from patients to the Diagnosis dimension must map
to the Low-level Diagnosis category, not to Diagnosis Family or 9 .

In order to perform the test for data precision, we need to know the granularities of the
data in the different dimensions. For this, for each MO, � , we maintain a separate precision
MO, �Aë . The precision MO has the same number of dimensions as the original MO. For each
dimension in the original MO, the precision MO has a corresponding “granularity” dimension.
The) ’th granularity dimension has only two categories, ¼ MQìkí(¾åîÝìkM�ï/ð q ' and 9 ë¢» . There is one
value in a “Granularity” category for each category in the corresponding dimension in � . The
set of facts � is the same as in � , and the fact-dimension relations for � ë map a fact � to the
dimension value corresponding to the category that � was mapped to in � . The determination
of whether a given query can be answered precisely is dependent on the actual data in the MO,
and can change when the data in the MO is changed. Thus, we need to update the precision MO
along with the original MO when data changes.

Formally, given an MO, � � �¤�7�*�N�*jg�*�x� , where �£� �����! "� , � $&%Z' �*)"�ñ,��&.�.ç�+0 ,%(' �Á�d2 ' �&5l6*»�� , 2 ' � $ 2 ' =&0 , jò� $ j ' �*)8�Á,��;././�¢�+0 , and �zë�� $ �zë¢»¬�¢)Û�Á,§�&./.��*�+0 , we define the
precision MO, �Aë , as:

�Aël�¹�¤��ë§�*��ë§�*jxë§�¢�zë&�¢�
where

��ëD�¹���Në��! 7ë§�*�!�Nël�<���! 7ë�� $&% ë¢»��*)+�¹,��;././�¢�+0k� % ë¢»�� $ ¼ M!ìkíE¾åî^ìkMsï/ð q ' �&9Në¢»�0k�
��ël���N�*jxëD� $ jxë¢»��*)u�n,§�&./.��*�+0k�*jxë¢»ª�n��huë*»��;5zë¢»��*��huë¢»ª� $ ¼ M!ìkíE¾åî^ìkMsï/ð q ' �&9zë¢»¤0k�

¼ MQìkí(¾kî^ìkM�ï/ð q ' � $ ¸ [ª» �¬i�� ¿ iDF¦j ' 0k�&9 ë*» � $ 9 ' 0k�
i;vN5zë¢»�i
8ó ��i;v���i
 �ªô¦��i&vNF<¼ MQìkí(¾åîÝìkM�ï/ð q ' ��i
 �¹9 ' � and

�zë¢»ª� $ �����s¸�[
»��¬i��!� ¿ �@����i��8F¦� ' 0
Example 7 The MO from Example 5 has the precision MO ��ë\�G����ë§�*�ªë��*jxë§�*�Në�� , where the
schema ��ë has the fact type Patient and the dimension types ¼ M!ìkí ���ç�¤���;���d��� and ¼ MQìkí ¯Z°�±�²�³¤´ . The
dimension type ¼ MQìkí �����¤�`�;���d�µ� has the category types ¼ M!ìkí(¾kî^ìkMsï/ð q �����¤�`�;���d�µ� and 9"õkö����Q���������;���d��� .
The dimension type ¼ MQìkí ¯Z°/±Z²�³�´ has the category types ¼ M!ìkí(¾kî^ìkMsï/ð q ¯�°�±�²�³¤´ and 9"õkö���� ¯�°�±�²�³¤´ .
The set of facts is the same, namely � ë � $�® �&,��¢WJ0 . Following the dimension types, there
are two dimensions, ¼ M!ìkí �����¤�`�;���d�µ� and ¼ MQìkí ¯Z°/±Z²�³¤´ . The ¼ M!ìkí �����¤�`�;���d�µ� dimension has the cat-
egories ¼ M!ìkí(¾kî^ìkMsï/ð q ���������;���d��� and 9"õkö��`�Q�Z�ç�¤���;�@�d�µ� . The values of the ¼ M!ìkí(¾kî^ìkMsï/ð q ���ç�¤���;���d��� cate-
gory is the set of category types

$
Low-level Diagnosis, Diagnosis Family, 9����ç�¤���;���d���s0 . The¼ MQìkí ¯�°�±Z²¬³¤´ dimension has the categories ¼ MQìkí(¾åîÝìkM�ï/ð q ¯�°�±�²�³¤´ and 9 õkö��`� ¯Z°�±�²�³¤´ . The values of

the ¼ MQìkí(¾kî^ìkM�ï/ð q ¯�°�±Z²¬³¤´ category is the set
$

Precise, Imprecise, 9 ¯Z°/±Z²�³�´ 0 . The partial orders
on the two dimensions are the simple ones, where the values in the bottom category are unre-
lated and the 9 value is greater than all of them. The fact-dimensions relations ��v and �
 have
the contents �}vz� $ � ® � Diagnosis Family �*�&�Q,�� Low-level Diagnosis �¢�&��W>� Low-level Diagnosis �*0
and �
 � $ � ® �;97¯Z°/±Z²�³�´Â�¢�&�!,§� L�MfOQ÷&ïùø�O �*�&�@WJ��úfû�r MfOQ÷&ïùø�O �¢0 . A graphical illustration of the precision
MO is seen in Figure 5.

4 HANDLING IMPRECISION 15

Low-level

Diagnosis

Diagnosis

Family

⊥

Diagnosis

⊥

Gran

Diagnosis

Patient
 0
 1
 2

Gran

HbA1c%

Precise
 Imprecise

⊥

HbA1c%

⊥

Figure 5: Precision MO

The test to see if the data is precise enough to answer a query ü can be performed by rewrit-
ing the query üý�¥ËÍÌÝhÂvs�&./.���h a �*j a&Ê vw�¬Ä Ï ���o� to a “testing” query ü7ëþ�#ËÍÌÝ¸Dv��&./.���¸ a ��¸ a&Ê vw�Ç O*ðQÿ8½k¾JíJð Ï ���¦ë�� , where ¸ ' is the corresponding “granularity” component in j ë¢» if h ' ×�#9 ' .
Otherwise, ¸ ' �-9 ' . Thus, we group only on the granularity components corresponding to the
components that the physician has chosen to group on. The dimension ¸ a;Ê v is used to hold
the result of counting the members in each “granularity group.” The result of the testing query
shows how many facts map to each combination of granularities in the dimensions that the
physician has chosen to group on. This result can be used to suggest alternative queries, as it is
now easy for each dimension j ' to determine the minimal category h Ð' that has the property thatp(q*r O ��h ' �l5l6*»\p(q*r O ��h Ð' �+�S�¨h ' =s�@�{F��H�U�@����i��NFU� ' �¦i�F h ' = © p(q*r O �¬h ' =s� e 6*»\p(q*r O �¬h Ð' �!� ,
i.e., in each dimension we choose the minimal category greater than or equal to the original
“grouping” category where the data is “precise enough” to determine how to group the facts.
We can also directly present the result of the testing query to the physician, to inform about the
level of data imprecision for that particular query. The physician can then use this additional
information to decide whether to run the alternative query or proceed with the original one.

Example 8 The physician wants to know the average HbA1c% grouped by Low-level Di-
agnosis. The query asked is then ü � ËÂÌ Low-level Diagnosis �&9 ¯�°�±�²�³¤´ �*j � � ��� ¼
 Ï ���o� ,
thus effectively grouping only on Low-level Diagnosis, as the 9 ¯Z°/±Z²�³�´ component has only
one value. The testing query then becomes ü\ëK� ËÍÌ�¼ M!ìkíE¾åî^ìkMsï/ð q ���������;���d��� �&9 õkö���� ¯�°�±Z²¬³¤´ �*j � �Ç O*ðQÿ8½k¾JíJð Ï ��� ë � , which counts the number of facts with the different Diagnosis granularity lev-
els. The result of ü ë , described by the fact-dimension relations, is � v � $ � $,��*W>0k� Low-level
Diagnosis �*�&� $�® 0k� Diagnosis Family �*0 , �
 � $ � $,§�*WJ0k�;9 õkö��`� ¯Z°�±�²�³¤´ �*�&� $�® 0k�&9 õåö���� ¯Z°/±Z²�³�´ �¢0 , and� � � k � $,��¢WJ0k�*Wk�*�&� $�® 0k�&,��*0 . This tells us that 2 patients have a low-level diagnosis, while 1

5 HANDLING IMPRECISION IN QUERY EVALUATION 16

has a diagnosis family diagnosis. Thus, the alternative query will be ü���ËÍÌDiagnosis Family,9 ¯Z°/±Z²�³�´ �*j � � ��� ¼
 Ï ���o� , which groups on Diagnosis Family rather than Low-level Diagnosis.

5 Handling Imprecision in Query Evaluation

If the physician wants the original query answered, even though the data is not precise enough,
we need to handle imprecision in the query evaluation. This section shows how to handle
imprecision in the grouping of data and in the computation of aggregate functions, followed by
presenting the imprecise result to the physician.

5.1 Imprecision in Grouping

We first need the ability to handle imprecision in the data used to group the facts. If a fact maps
to a category that is finer than or equal to the grouping category in that dimension, there are
no problems. However, if a fact maps to a coarser category, we do not know with which of
the underlying values in the grouping category it should be grouped. To remedy the situation,
we give the physician several answers to the query. First, a conservative answer is given that
includes in a group only data that is known to belong to that group, and discards the data that
is not precise enough to determine group membership. Second, a liberal answer is given that
includes in a group all data that might belong to that group. Third, a weighted answer is given
that also includes in a group all data that might belong to it, but where the inclusion of data in
the group is weighted according to how likely the membership is. Any subset of these three
answers can also be presented if the physician so prefers. These three answers give a good
overview of how the imprecision in the data affects the query result and thus provide a good
foundation for making decisions taking the imprecision into account. We proceed to investigate
how to compute the answers.

The conservative grouping is quite easy to compute. We just apply the standard aggregate
formation operator from the algebra, which by default groups only the facts that are charac-
terized by dimension values having a granularity finer than or equal to the granularity of the
grouping components in the respective dimensions. The rest of the facts are discarded, leaving
just the conservative result.

For the liberal grouping, we need to additionally capture the data that are mapped directly
to categories coarser than the grouping categories. To allow for a precise definition of the
liberal grouping, we change the semantics of the aggregate formation operator. In Section 6,
we discuss how to get the same result using only the standard aggregate formation operator,
thus maintaining the ability to implement the approach without the need for new operators. We
change the semantics of the aggregate formation operator so that the facts are grouped according
to dimension values of the finest granularity coarser than or equal to the grouping categories
available. Thus, either a fact is mapped to dimension values in categories at least as fine as
the grouping categories, i.e., the data is “precise enough,” or the fact is mapped directly to
dimension values of a coarser granularity than the grouping categories. The formal semantics
of the modified aggregate formation operator is given by replacing the original definitions with

5 HANDLING IMPRECISION IN QUERY EVALUATION 17

the ones given below:

� Ð � $ ¼ MQ½k¾ rª��i;v��&.�./��i a � ¿ �¬i;vs�&./.���i a � F j�v Ö ./. Ö j a �¥p(q*r O ��hÍvf� 5l6 Å ¸Dv&�¬i;v���ò.�.7� pEqfr O ��h a � 5�6 á ¸ a �¬i a �g�ý¼ MQ½k¾ rª��i;v��&.�./��i a � ×� Ø��£�d�1)K���Û�Zi Ð' � i Ð' e ' i '�Á¼ M!½k¾ rª��i&vs�&./.���i Ð' �&./.���i a ��� ¼ M!½k¾ rª�¬i;v��;././�si ' �&./.���i a �!�Q�*0 and � Ð' � $ ��� Ð ��i Ð' � ¿ ����i;v��&.�./��i a ��Fj�v Ö .�. Ö j a ��� Ð �À¼ M!½k¾ rª��i&vs�&./.���i a �ª�g� Ð Fy� Ð �¦i ' �ni Ð' �*0 .
Thus, we allow the dimension values to range over the categories that have coarser or the

same granularity as the grouping categories. We group according to the most precise values, of
a granularity at least as coarse as the grouping categories, that characterize a fact.

Example 9 If we want to know the number of patients, grouped by Low-level Diagnosis, and
project out the other three dimensions, we will get the set of facts � Ð � k�® 0k� $,�0k� $ W>0k0 ,
meaning that each patient goes into a separate group, one for each of the two low-level di-
agnoses and one for the Diabetes diagnosis family. The fact-dimension relations are � v �$ � $�® 0k� � �*�;� $,�0k� ~ �*�;� $ WJ0k�Q�J�*0 and �
 � $ � $�® 0k�;,w�*�;� $,�0k�;,w�*�;� $ WJ0k�;,w�*0 . We see that each group of
patients (with one member) is mapped to the most precise member of the Diagnosis dimension
with a granularity coarser than or equal to Low-level Diagnosis, that characterize the group.
The count for each group is 1.

We can use the result of the modified aggregate formation operator to compute the liberal
grouping. For each group characterized by values in the grouping categories, i.e., the “pre-
cise enough” data, we add the facts belonging to groups characterized by values that “con-
tain” the precise values, i.e., we add the facts that might be characterized by the precise val-
ues. Formally, we say that ¼ M!½k¾ r
	D�¬i;v��;././�si a �"�¥t¨Ü ÕÅ�� Å Ü Å!ÞàßàßàÞ Ü Õá � á Ü á ¼ M!½k¾ rª�¬i Ð v �;././�si Ða � , where the¼ MQ½k¾ r
�¬i Ð v �&.�./��i Ða � ’s are the groups in the result of the modified aggregate formation operator.
Thus, the liberal (and conservative) grouping is easily computed from the result of the modified
aggregate formation operator.

Example 10 If we want the number of patients, grouped liberally by Low-level Diagnosis, we
will get the set of facts � Ð � k�® �;,�0k� $�® �*WJ0k0 , meaning that patient 0 goes into both of the two
low-level diagnosis groups. The fact-dimension relations are ��v�� $ � $�® �&,�0k� ~ �*�;� $�® �¢WJ0k�!�>�*0
and �
 � $ � $�® �&,�0k�*Wk�*�&� $�® �*W>0k�*Wå�¢0 . We see that each patient is mapped to all the low-level
diagnoses that might be true for the patient. The count for each group is 2, meaning that for
each of the two low-level diagnoses, there might be two patients with that diagnosis. Of course,
this cannot be true for both diagnoses simultaneously.

The liberal approach overrepresents the imprecise values in the result. If the same fact ends
up in , say, 20 different groups, it is undesirable to give it the same weight in the result for a
group as the facts that certainly belong to that group, because this would mean that the imprecise
fact is reflected 20 times in the overall result, while the precise facts are only reflected once.
It is desirable to get a result where the imprecise facts are reflected at most once in the overall
result.

5 HANDLING IMPRECISION IN QUERY EVALUATION 18

To do so we introduce a weight
 for each fact � in a group, making the group a fuzzy
set [28]. We use the notation �AF��K¼ M!½k¾ rª�¬i;vs�&./.���i a � to mean that � belongs to ¼ MQ½k¾ rª��iYv��&.�./��i a �
with weight
 . The weight assigned to the membership of the group comes from the partial
order 5 on dimension values. For each pair of values iwvs��i
 such that i&v¡5 i
 , we assign a
weight � , using the notation i�v{5 �����Qi
 , meaning that i
 should be counted with weight �
when grouped with i&v . Normally, the weights would be assigned so that for a category h and a
dimension value i , we have that �NÜ Å ã |
� Ü Å�� Ú ë â/Ü��¡�G, , i.e., the weights for one dimension value
w.r.t. any given category adds up to one. This would mean that imprecise facts are counted only
once in the result set. However, we do not assume this, to allow for a more flexible attribution
of weights.

Formally, we define a new Group function that also computes the weighting of facts. The
definition of this is ¼ MQ½k¾ r � �¬i v �&.�./��i a �·� t¨Ü ÕÅ � Å Ú ë Å â/Ü Å¬ÞàßàßàÞ Ü Õá � á&Ú ë ásâ/Ü¤á�¼ M!½k¾ r���i Ð v �&./.���i Ða � , where the¼ MQ½k¾ r
�¬i Ð v �&.�./��i Ða � ’s are the groups from the result of the modified aggregate formation opera-
tor. The weight assigned to facts is given by the group membership as: �¦F<¼ MQ½k¾ rª��i Ð v �&./.���i Ða � ©�AF�� ��� ° Ú ë Å¬ÞàßàßàÞ ë á âN¼ MQ½k¾ r � ��i;v��&.�./��i a � , where the i ' ’s, the i Ð' ’s, and the � ' ’s come from the ¼ MQ½k¾ r �
definition above. The function Comb combines the weights from the different dimensions
to one, overall weight. The most common combination function will be

ÿ8½ û������
v&�&.�./��� a �S��(v �s./.!��� a , but for flexibility, we allow the use of more general combination functions, e.g., func-
tions that favor certain dimensions over others. Note that all members of a group in the result
of the modified aggregate formation operator get the same weight, as they are characterized by
the same combination of dimension values.

The idea is to apply the weight of facts in the computation of the aggregate result, so that
facts with low weights only contribute a little to the overall result. This is treated in detail in the
next section, but we give a small example here to illustrate the concept of weighted groups.

Example 11 We know that 80% of Diabetes patients have insulin-dependent diabetes, while
20% have non-insulin-dependent diabetes. Thus, we have that

~ 5ò�Q.#"å� � and �þ5 �!.çWk� � , i.e.,
the weight on the link between Diabetes and Insulin-dependent diabetes is .$" and the weight
on the link between Diabetes and Non-insulin-dependent Diabetes is .çW . The weight on all
other links is , . Again, we want to know the number of patients, grouped by Low-level Di-
agnosis. The Group function divides the facts into two sets with weighted facts, giving the
set of facts � Ð � k�®kß % �&,;v&0k� $�®åß
 �¢W�v&0 . Using subscripts to indicate membership weighting,
the result of the computation is given in the fact-dimension relations � Ð v � $ � $�®åß % �;,&v&0k� Insulin-
dependent Diabetes �*�&� $�®Jß
 �*W§v&0k� Non-insulin-dependent Diabetes �¢0 and � Ð
 � $ � $�®kß % �&,&v&0k�;,�.#"k�*�� $�®åß
 �¢W�v&0k�&,§.çWå�¢0 , meaning that the weighted count for the group containing the insulin-depen-
dent diabetes patients 0 and 1 is 1.8 and the count for the non-insulin-dependent diabetes pa-
tients 0 and 2 is 1.2.

5.2 Imprecision in Computations

Having handled imprecision when grouping facts during aggregate formation, we proceed to
handle imprecision in the computation of the aggregate result itself. The overall idea is here to
compute the resulting aggregate value by “imputing” precise values for imprecise values, and
carry along a computation of the imprecision of the result “on the side.”

5 HANDLING IMPRECISION IN QUERY EVALUATION 19

For most MO’s, it only makes sense to the physician to perform computations on some
of the dimensions, e.g., it makes sense to perform computations on the HbA1c% dimension,
but not on the Diagnosis dimension. For dimensions j , where computation makes sense, we
assume a function & R j TV :D[that gives the expected value, of the finest granularity in
the dimension, for any dimension value. The expected value is found from the probability
distribution of precise values around an imprecise value. We assume that this distribution is
known. For example, the distribution of precise HbA1c% values around the 9 value follows a
normal distribution with a certain mean and variance.

The aggregation function Ä then works by “looking up” the dimension values for a fact �
in the argument dimensions, applying the expected value function, & , to the dimension values,
and computing the aggregate result using the expected values, i.e., the results of applying &
to the dimension values. Thus, the aggregation functions need only work on data of the finest
granularity. The process of substituting precise values for imprecise values is generally known
as imputation [22]. Normally, imputation is only used to substitute values for unknown data,
but the concept is easily generalized to substitute a value of the finest granularity for any value
of a coarser granularity. We term this process generalized imputation. In this way, we can use
data of any granularity in our aggregation computations.

However, using only generalized imputation, we do not know how precise the result is. To
determine the precision of the result, we need to carry along in the computation a measure of the
precision of the result. A granularity computation measure (GCM) for a dimension j is a type
CM that represents the granularity of dimension values in D during aggregate computation. A
measure combination function (MCF) for a granularity computation measure CM is a function' R

CM Ö CM TV CM, that combines two granularity computation measure values into one. We
require that an MCF be distributive and symmetric. This allows us to directly combine inter-
mediate values of granularity computation measures into the overall value. A final granularity
measure (FGM) is a type FM, that represents the “real” granularity of a dimension value. A
final granularity function (FGF) for a final granularity measure FM and a granularity computa-
tion measure CM is a function B R CM TV FM, that maps a computation measure value to a final
measure value. The reason to distinguish between computation measure and final measures is
only that this allows us to require that the MCF is distributive and symmetric. The choice of
granularity measures and functions is made depending on how much is known about the data,
e.g., the probability distribution, and what final granularity measure the physician desires.

Example 12 The level of a dimension value, with
®

for the finest granularity, , for the next,
and so on, up to � for the 9 value, provides one way of measuring the granularity of data. A
simple, but meaningful, FGM is the average level of the dimension values that were counted
for a particular aggregate result value. As the intermediate average values cannot be combined
into the final average, we need to carry the sum of levels and the count of facts during the
computation. Thus the GCM is h\� �)(Ö (, the pairs of natural numbers, and the GCM value
for a dimension value i is �+* O-,wO*î �¬i��*�;,w� . The MCF is

' �Q���ªv&�*�
 �¢�&��� � �*�/.&�!�8������v/0g� � �¢�
 0g�1.&� .
The FGM is 2 , the real numbers, and the FGF is BZ��� v �*�
 �8���
 3 � v . In the case study, precise
values such as

� . � has level
®
, imprecise values such as

�
has level , , and the 9 value has levelW .

5 HANDLING IMPRECISION IN QUERY EVALUATION 20

Example 13 The standard deviation 4u�65{� of a set of values 5 from the average value i��65{�
is a widely used estimate how much data varies around i . Thus, it can also be used as an
estimate of the precision of a value. Given the probability distribution of precise values �
around an imprecise value) , we can compute the standard deviation of the � ’s from &I��)¬� and
use it as a measure of the granularity of) . However, we cannot use 4 as a GCM directly
because intermediate 4 ’s cannot be combined into the overall 4 . Instead we use as GCM the
type h\� �7(Ö 2 Ö 2 , computing using the count of values, the sum of values, and the sum
of squares of values as the GCM values. For a value 8 , the GCM value is �!,§�98ª�98
 � . The MCF
is
' �Q��� v �:8 v �:; v �¢�&���
 �98
 �9;
 �Q�x� ��� v 0 �
 �98 v 0<8
 �9; v 0<;
 � . This choice of MCF means that

the MCF is distributive and symmetric [25]. The FGM is ��� �=2 , which holds the standard
deviation, and the FGF is BZ�@�+�98ª�9;(�8�?> ��;�@78
 � 3 ���A@<,w� . For values of the finest granularity,
only data for one 5 is stored. For values of coarser granularities, we store data for several5 values, chosen according to the probability distribution of precise values over the imprecise
value. In the case study, we would store data for 1 5 value for precise values such as

� . � , for
10 5 values for imprecise values such as

�
, and for 100 5 values for the 9 value. This ensures

that we get a precise estimate of the natural variation in the data as the imprecision measure,
just as we would get using multiple imputation [22, 3].

For both the conservative and the liberal answer, we use the above technique to compute the
aggregate result and its precision. All facts in a group contribute equally to both the result and
the precision of the result. For the weighted answer, the facts in a group are counted according
to their weight, both in the computation of the aggregate result and in the computation of the
precision. We note that for aggregation functions Ä whose result depend only on one value in the
group it is applied to, such as MIN and MAX, we get the minimum/maximum of the expected
values.

Example 14 We want to know the average HbA1c% for patients, grouped by Low-level Diag-
nosis, and the associated precision of the results. As granularity measures and functions, we
use the level approach described in Example 12. We discuss only the weighted result. As seen
in Example 11, the resulting set of facts is � Ð � k�®åß % �&,;v&0k� $�®åß
 �¢W�v&0 , and the SetCount is ,�.#"
for the first group and ,§.çW for the second. When computing the sum of the HbA1c% values,
we impute ¶k. ® and BJ. ® for the imprecise values ¶ and 9 , respectively. For the first group, we
multiply the values BJ. ® and

� . � by their group weights .$" and , , respectively, before adding
them together. For the second group,

� . � and B>. ® are multiplied by , and .�W , respectively. Thus,
the result of the sum for the two groups is , ® . ~ and BJ.ù¶ , giving an average result of

� .^¶ and
� .#B ,

respectively.
The computation of the precision proceeds as follows. The level of the values 9 ,

� . � , and ¶ isW , ® , and , , respectively. The weighted sum of the levels for each group is found by multiplying
the level of a value by the group weight of the corresponding fact, yielding ,§.#B for the first
group and ,�.µ� for the second. The weighted count of the levels is the same as that for the
facts themselves, namely ,�.$" and ,�.�W . This gives a weighted average level of .#C for the Insulin-
dependent Diabetes group and ,�.çW for the Non-insulin-dependent diabetes group, meaning that
the result for the first group is more precise. The relatively high imprecision for the first group

6 USING PRE-AGGREGATED DATA 21

is mostly due to the high weight (.#") that is assigned to the link between Diabetes and Insulin-
dependent Diabetes. If the weights instead of .#" and .�W had been . � and . � , the weighted average
levels would have been .ù¶ and ,§. ~ .
5.3 Presenting the Imprecise Results

The final step in the imprecision handling is to present the imprecision in the result to the
physician. We have several alternatives for this step. The most straightforward approach is to
present the result values along with their corresponding final granularity measure values. This
gives a very precise estimate of the precision of a result value.

Example 15 For the example above, this would present the (Low-level Diagnosis,
AVG(HbA1c%), AVG(Level)) tuples from the conservative, the liberal, and the weighted an-
swers. For the conservative answer, the result is � Insulin-dependent diabetes � � . � � ® �*�&� Non-
insulin-dependent Diabetes �s¶k�&,�� . For the liberal answer, the result is � Insulin-dependent diabe-
tes � � .$"J�&,��*�&� Non-insulin-dependent Diabetes �9BJ. � �&,§. � � . For the weighted answer, the result is� Insulin-dependent diabetes � � .^¶k�&.$Cå�*�;� Non-insulin-dependent Diabetes � � .#B>�&,�.�Wå� .

The other alternative for presenting the imprecision is one which follows our overall ap-
proach of using the granularity itself as an estimate of the precision of data. We use the impre-
cision of a result value to convert (coarse) the value into a value of a granularity corresponding
to the imprecision. A value coarsing function (VCF) for a dimension j and a FGM � is a
function D R : [HÖ � TV j , where D��¬i��Â�Gi v such that i�5�i v . Thus, the VCF maps values of
the finest granularity into “containing” values of a possibly coarser granularity, determined by
the imprecision. The VCF and the granularities of the result dimension are chosen so that the
granularity of the result gives a good overview of the true precision.

Example 16 We choose the HbA1c% dimension, with the same granularities, as the result
dimension. As the VCF we choose Eå�F8��x�HG such that 8K5IG��J* O!,�O*î ��G(�7� ÿÂOsï/î^ïdíLK �F8�� , i.e.,
for a number 8 , we choose the value that “contains” 8 and has the level of the least natural
number greater than or equal to 8 , e.g., Ek�!.$Cå�l�À, and Ek�!,§.çWk�7�À9 . A graphical illustration of
the resulting MO’s for the conservative, liberal, and weighted results are seen in Figure 6. We
note that the liberal and weighted answers are identical, suggesting that this is closer to the truth
than the conservative answer in this case. The result value for AVG(HbA1c%) is 9 in both the
liberal and the weighted answer for the Non-insulin-dependent group because half of the input
data is unknown, yielding the resulting average value very imprecise.

6 Using Pre-aggregated Data

The approach we have presented above handles imprecision by storing a few extra attributes for
the dimension values and computing the imprecision based on these attributes during normal
query evaluation. No new algorithms, loops, etc., are introduced. Thus, the computational
complexity of query evaluation is only changed by a constant factor and is unchanged in big- �

6 USING PRE-AGGREGATED DATA 22

{1}
 {2}

3

⊥

Diagnosis

dimension

4

5

Result

dimension
⊥

5
 6
 7
 ...
...

5.5
5.4
 ...
...

Conservative result

7.0

{0,1}
 {0,2}

3

⊥

Diagnosis

dimension

4

5

Result

dimension
⊥

5
 6
 7
 ...
...

5.5
5.4
 ...
...

Liberal result

7.0

...

{0,1}
 {0,2}

3

⊥

Diagnosis

dimension

4

5

Result

dimension
⊥

5
 6
 7
 ...
...

5.5
5.4
 ...
...

Weighted result

7.0

Figure 6: Resulting MO’s for the Conservative, Liberal, and Weighted Answers

terms. The computational complexity of query evaluation is dominated by the grouping of data.
Using normal sorting, this can be accomplished in �����l�/������� time, where � is the number of
facts. Even though this is a low complexity compared to previously suggested approaches [23,
24, 4], it is attractive to lower the running time of queries even further. A very decisive factor
in the success of commercial OLAP products is the successful use of pre-aggregated data for
speeding up query execution. Ideally, the handling of imprecision in OLAP systems should
also take advantage of pre-aggregated data, so that query evaluation remains fast when handling
imprecision. This section investigates how our approach can exploit pre-aggregated data.

The most common strategies for pre-aggregation is full, no, and partial pre-aggregation.
With full pre-aggregation, aggregates are stored for all combinations of granularities in the dif-
ferent dimensions. This provides fast response time, but requires very large amounts of storage
space, and the cost of keeping the aggregates updated is very high. In some real-world cases,
full pre-aggregation requires up to 200 times as much space as the raw data, making it a very
expensive option. However, if the multidimensional space for an MO is small and dense, i.e.,
facts exist for most combinations of dimension values, full pre-aggregation is attractive [19].
If full pre-aggregation is too expensive, partial pre-aggregation is an option. With partial pre-
aggregation, a number of combinations of dimension granularities is chosen, and the aggregate
values are stored for these. The aggregate values are then re-used for coarser granularities, e.g.,
the aggregate results for Low-level Diagnosis could be re-used to compute the results for Diag-
nosis Family. The condition for re-use is that we have summarizability for the MO [17], which
intuitively means that lower-level results can be directly combined into higher-level results. It
has been proven [17] that summarizability is equivalent to the hierarchies in dimensions be-
ing strict, partitioning, and complete, i.e., one lower-level dimension value map to exactly one
higher-level value, and for every higher-level value there exist at least one lower-level value that
map to it. Additionally, facts must be mapped only to dimension values of the finest granularity,
and the aggregation function must be distributive. This insight is important when investigating
the use of pre-aggregated data.

The first step in the query evaluation is the test for sufficient data precision, and the possible
suggestion of an alternative query. This step was achieved by rewriting the original query to

6 USING PRE-AGGREGATED DATA 23

a “testing” query on the precision MO, as described in Section 4.2. With 10 dimensions and 4
levels in each dimension, the size of the multidimensional space for the precision MO will be� v�M �-W
 M�N ,�� ®§®�® � ®�®�® , which is very small, and probably also quite dense. We need to store
the result of the SetCount operation for each combination of dimension values. This does not
take up very much space, so full pre-aggregation is feasible, yielding very fast response time
for this part of the query evaluation. The next steps in the query evaluation are the grouping
of facts and the aggregate computation. With respect to pre-aggregation, it only makes sense
to consider these two steps in conjunction. For the computation of the aggregate result itself,
using the expected values, ordinary pre-aggregation techniques can be applied. If we want to use
partial pre-aggregation, we need to make sure that we have summarizability. When checking
the conditions for our case, we see that facts are mapped directly to values of coarser granularity,
e.g., patient 0 is mapped directly to the Diabetes value. To ensure summarizability, we must
introduce “placeholder” values [17] of the finest granularity, that “takes the place” of a coarser
value. In our case, we introduce a “Diabetes” placeholder value in the Low-level Diagnosis
category and map patient 0 to it. The placeholder value is then mapped to the “real” Diabetes
value. When doing this, we also get the side benefit that the liberal result is automatically
computed using the standard aggregate formation operator.

If we do not want to alter the MO in this way, we need to use full or no pre-aggregation,
which may or may not be sensible in the given case. We note that full pre-aggregation can be
applied even though we do not have summarizability. If the hierarchies are not altered to achieve
summarizability, we can still compute the liberal result using the standard aggregate formation
operator. This is done by issuing a series of queries, one for each combination of granularities
coarser than or equal to the grouping categories. If grouping by Low-level Diagnosis (and9PORQ�SEv�Td´), we would issue queries that grouped by Low-level Diagnosis and 9UORQ�SEv�Td´ , by Di-
agnosis Family and 9 ORQ�SEv�Td´ , and by 9 �Z�ç�¤���;�@�d�µ� and 9 ORQ�S(v�Td´ . From the result of these queries,
we can deduce the aggregate result for the part of the liberal answer not in the conservative an-
swer, e.g., when knowing that the count of patients for 9 �Z�ç�¤���;�@�d�µ� is

~
, the count for Diabetes is

also
~
, the count for Insulin-dependent Diabetes is , , and the count the Non-insulin-dependent

diabetes is , , we can deduce that the count for patients mapped directly to Diabetes is , , and
that no patients are mapped directly to 9 ���ç�¤���;���d��� .

We also need to consider pre-aggregation in relation to the computation of the precision.
The values that should be pre-aggregated is the aggregate values for the granularity computa-
tion measures. With respect to pre-aggregation, GCM values are just ordinary values, so the
criteria and conditions discussed above for choosing full or partial pre-aggregation also applies.
The measure combination function is required by definition to be distributive, so partial pre-
aggregation can be applied if the rest of the summarizability conditions are met, meaning that
intermediate precision values can be re-used to compute the total precision value. Thus, the
computation of the precision of the result is fully supported by pre-aggregation.

For both the computation of the aggregate result and the computation of the imprecision, we
note that the introduction of weighting does not disturb the pre-aggregation. We just store the
weighted results and imprecisions instead of the un-weighted.

7 CONCLUSION AND FUTURE WORK 24

7 Conclusion and Future Work

Motivated by the increasing use of OLAP technology for medical applications, we investigate
how to solve one of the most common problems with medical (as well as other) data, namely
data imprecision, using concepts from the multidimensional data models most commonly used
in OLAP systems.

The approach described in this paper generally uses the concept of data granularity to han-
dle imprecision in the data. To have a concrete context for presenting our technique, we present
a multidimensional data model and an associated algebraic query language that facilitate formal
definition of the concepts used in the technique. Data imprecision is handled by first testing if
the data is precise enough to answer a query precisely. If this is not the case, an alternative
query that might be answered precisely is suggested. If the physician asking the query elects to
proceed with the original query, the imprecision in the data is reflected in the grouping of data,
as well as in the aggregate computation. The physician is presented with the three results. The
conservative result includes only what is known to be true, the liberal answer includes every-
thing that might be true, while the weighted answer includes everything that might be true, but
gives precise data higher weights than imprecise data. Along with the aggregate computation,
a separate computation of the precision of the result is carried out. As the last part of imprecise
query handling, the imprecise result is presented to the physician. We discuss how to use pre-
aggregated data for more efficient query processing and how to implement the approach using
SQL.

Compared to previous approaches to handling imprecision, this work improves by showing
how existing concepts and techniques from multidimensional databases, such as granularities
and pre-aggregation, can be maximally re-used to also support imprecision. This yields an
effective approach that can be implemented using current technology. Additionally, imprecision
is handled for both the grouping of data and in the aggregate computation.

In future work, it would be interesting to pursue a more theoretical investigation of how to
implement the technique using special-purpose data structures and algorithms, to achieve opti-
mal concrete complexity. A further investigation of the issues related to “single-value” aggrega-
tion functions such as MIN and MAX in relation to data granularity is also interesting. Unlike
other aggregation functions, these are not readily sensitive to weighting. We have showed how
to present data imprecision in the result using the existing granularities, but it would also be
very interesting to explore other means of graphically presenting imprecision in the result to fa-
cilitate the user interpretation of an imprecise result. Another issue for future research, related
to presentation of the imprecise result, is to present the user with the data that prevented a given
query from being precisely answerable, allowing the user to reformulate the query to avoid this
data or to seek and obtain more precise data from outside sources.

The presented technique is applicable for the common case where the data has a degree of
imprecision that cannot be ignored, but data precision in any given dimension is reasonably
high compared to the precision requested by the queries. If the data is very imprecise, this
technique will not be so helpful, as bad data can only produce bad results. An interesting topic
for future research would be to give precise measures for the usefulness of technique, given the
available data. In the cases where the presented technique is less useful, it would be interesting

REFERENCES 25

to investigate whether a combination with other known techniques for handling imprecision
could widen the scope of applicability.

References

[1] R. Agrawal and J. Kiernan. An Access Structure for Generalized Transitive Closure
Queries. In Proceedings of the Ninth International Conference on Data Engineering,
pp. 429–438, 1993.

[2] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, X. S. Wang. A Glossary of Time
Granularity Concepts. In Temporal Databases: Research and Practice, pp. 406–413.
LNCS 1399, Springer-Verlag, 1998.

[3] S. van Buuren, E. V. van Mulligen, J. P. L. Brand. Routine Multiple Imputation in Statis-
tical Databases. In Proceedings of the Seventh International Conference on Scientific and
Statistical Database Management, pp. 74–78, 1994.

[4] A. L. P. Chen, J-S. Chiu, and F. S. C. Tseng. Evaluating Aggregate Operations over
Imprecise Data. IEEE Transactions on Knowledge and Data Engineering, 8(2):273–284,
1996.

[5] P. P-S. Chen. The Entity-Relationship Model — Toward a Unified View of Data. ACM
Transaction on Database Systems, 1(1):9–36, 1976.

[6] E. F. Codd. Extending the Data Base Relational Model to Capture More Meaning. ACM
Transactions on Database Systems, 4(4):397–434, 1979.

[7] E. F. Codd. Providing OLAP (on-line analytical processing) to user-analysts: An IT man-
date. Technical report, E.F. Codd and Associates, 1993.

[8] C. E. Dyreson. Information Retrieval from an Incomplete Data Cube. In Proceedings of
the Twenty-Second Conference on Very Large Databases, pp. 532–543, 1996.

[9] C. E. Dyreson. A Bibliography on Uncertainty Management in Information Systems. In
[17], pp. 413–458, 1997.

[10] C. E. Dyreson and R. T. Snodgrass. Supporting Valid-time Indeterminacy. ACM Transac-
tions on Database Systems, 23(1):1–57, 1998.

[11] E. Gelenbe and G. Hebrail. A Probability Model of Uncertainty in Databases. In Proceed-
ings of the Second International Conference on Data Engineering, pp. 328–333, 1986.

[12] J. Gray et al. Data Cube: A Relational Aggregation Operator Generalizing Group-By,
Cross-Tab and Sub-Totals. Data Mining and Knowledge Discovery, 1(1):29–54, 1997.

REFERENCES 26

[13] K-C. Guh and C. Yu. Efficient Management of Materialized Generalized Transitive Clo-
sure in Centralized and Parallel Environments. IEEE Transaction on Knowledge and Data
Engineering, 4(4):371–380, 1992.

[14] K. J. Isselbacher, R. D. Adams, E. Braunwald, R. G. Petersdorf, and J. D.Wilson. Princi-
ples of Internal Medicine, Ninth Edition. McGraw-Hill, 1980.

[15] R. Kimball. The Data Warehouse Toolkit. Wiley, 1996.

[16] A. Klug. Equivalence of Relational Algebra and Relational Calculus Query Languages
Having Aggregate Functions. Journal of the ACM, 29(3):699–717, 1982.

[17] H. Lenz and A. Shoshani. Summarizability in OLAP and Statistical Databases. In Pro-
ceedings of the Ninth International Conference on Scientific and Statistical Databases,
pp. 39–48, 1997.

[18] A. Motro and P. Smets (Eds.). Uncertainty Management in Information Systems - From
Needs to Solutions. Kluwer Academic Publishers, 1997.

[19] The OLAP Report. Database Explosion. The OLAP Report White Paper. URL:
<www.olapreport.com/Databaseexplosion.html>. Current as of January
4th, 1999.

[20] T. B. Pedersen and C. S. Jensen. Multidimensional Data Modeling for Complex
Data. In Proceedings of the Fifteenth International Conference on Data Engineer-
ing, 1999. Extended version available as TimeCenter Technical Report TR-37, URL:e www.cs.auc.dk/TimeCenter æ , 1998.

[21] Red Brick Corporation. Star Schema Processing for Complex Queries. White Paper, Red
Brick Inc., 1997.

[22] D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. Wiley, 1987.

[23] E. A. Rundensteiner and L. Bic. Aggregates in Possibilistic Databases. In Proceedings of
the Fifteenth International Conference on Very Large Databases, pp. 287–295, 1989.

[24] E. A. Rundensteiner and L. Bic. Evaluating Aggregates in Possibilistic Relational Data-
bases. In Data and Knowledge Engineering, 7(3):239–267, 1992.

[25] S-C. Shao. Multivariate and Multidimensional OLAP. In Proceedings of the Sixth Inter-
national Conference on Extending Database Technology, pp. 120–134, 1998.

[26] E. Wong. A Statistical Approach to Incomplete Information in Database Systems. ACM
Transactions on Database Systems, 7(3):470–488, 1982.

[27] World Health Organization. International Classification of Diseases (ICD-10). Tenth Re-
vision, 1992.

[28] L. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1965.

A SQL IMPLEMENTATION 27

A SQL Implementation

This section discusses how to implement the presented approach using commercial relational
databases. The goal is to provide a mapping to relational tables and a set of query templates
that allows the physician to get the same results as in the presented approach with reasonable
efficiency.

In most relational representations of multidimensional data, the tables are divided into fact
tables and dimension tables [15]. As the names suggest, a fact table contain data related to
a particular fact, while the dimension tables contain information about the dimension values
and the hierarchies between them. In the presented data model, all data is considered to be
dimensional, even data that would normally be treated as “measures” in other multidimensional
models, e.g., the HbA1c% measurements. We follow this approach in the relational design,
leading to a “factless” fact table [15], i.e., a fact table where all the columns are dimension keys
(DK), i.e., foreign keys to dimension tables. However, as the combination of dimension values
for a fact � is not a “key” for � in our model, we also need to include a column to represent the
fact identity in the fact table. Thus, the fact table has the schema �+V ìk÷�ð ú P �*jXW¡vw�&.�./.��*jYW a � . All
data about the dimension values will be kept in dimension tables. We can still have reasonably
fast access to the data using techniques such as star join query processing [21], a technique
optimized for “multidimensional” relational queries. If the performance obtained with this
design is not sufficient, we can denormalize the fact table by putting the expected values (EV)
and the granularity computation measures (GCM) into it. This gives a schema of the form�+V ìk÷�ð ú P �*jXW"v��9&�Z(v&�s¸xh}��v&�&.�./�*jXW a �9&[Z a ��¸\h\� a � . We include the EV’s and GCM’s only for
the dimensions on which computation is meaningful. Assuming that the size (in bytes) of EV’s
and GCM’s is the same as the size of the dimension keys, and that computation makes sense for
half of the dimensions, this will double the space required for the fact table.

The design of the dimension tables depends on the complexity of the data. If the hierarchies
are strict, partitioning, and complete, and we only map facts to dimension values of the finest
granularity, we can capture the dimensions using ordinary “flat” dimension tables, leading to
“star schema” type design [15]. We record the dimension values (DV) for the different granu-
larities as different columns. We need to store the weights (W) for each of relations between
a dimension value of the finest granularity and the values of coarser granularities. Because of
the restrictions, we need only to record the expected values and granularity computation mea-
sures for the finest granularity. The schema of the dimension tables will have the structure��jXW��9&[Z/\¨��¸\h\�]\
�*j^Z1\¨�`_J\1�&./.��*j^Z1a
�`_Jaª� .

However, we would like to capture explicitly in the relational schema the situation that facts
are mapped directly to dimension values of a coarser granularity. This can be captured by storing
a table of pairs of all ancestors (A) and descendents (D) in the dimension partial order, i.e., the
transitive closure of the direct parent-child relationships. The computation and maintenance of
materialized transitive closures has been studied intensively in the scientific literature [1, 13], so
we do not discuss it further. For each (A,D) pair of dimension values, we record the levels (L) of
the ancestor and descendent, i.e., 0, 1, .., n, as well as the weight (W) on the link between A and
D. Additionally, we record the EV’s and GCM’s for the descendents only, where it makes sense.
The schema of the dimension tables will have the structure ��b��9cdS1�*jg�9cu[N�`_U�9&�ZJ[���¸\h\�{[Â� .

A SQL IMPLEMENTATION 28

We note that we can still take advantage of star join processing with this schema.
The aggregate formation queries must be translated into standard SQL queries. The most

general type of query is the one that computes the liberal grouping, while taking the weighting
into account. We will deal with this; the SQL queries needed for the other parts of query
evaluation are just special cases. The general SQL query has the form seen below.

SELECT ÄÎ� ÿ8½ û�����j�v&.e_U�&.�./�*j 	 .f_¹� g�j�h�.#&�Z�� , ¸xh}�"� ÿ8½ û��w��j�v&.f_U�&./.��*j 	 .e_¹�ig�j�hw.^¸\h\�o�
FROM �N�*j�v&�&./.��*j 	
WHERE �N.çjXW"vN��j�v&.çjXW AND ... AND �N.çjXW 	 ��j 	 .çjXW AND�N.çjXWYh7��j�h�.çjXW AND j�h�.#cjS���j�h§.#cu[AND

(j�v&.#cjS���¸kc8v OR (j vs.#cjS¦æH¸kc8v AND j�v&.#cjS��«j�v&.#cu[)) AND
....
(j 	 .#cjS��n¸kc 	 OR (j 	 .$cjS¦æH¸kc 	 AND j 	 .#cjS���j 	 .#cu[))

GROUP BY j v&.#b��;././�¢j 	 .$b
In the query, Ä is the aggregation function, Comb is the weighting combination function,j�h is the dimension on which we compute, � is the fact table, GCF is the granularity combi-

nation function, jIv&�&.�./�*j 	 are the l dimensions where we group on something else than the9 category, and ¸kcÍv&�;././�s¸mc 	 is the corresponding grouping levels. We can use this type of
query only if the weights can be multiplied directly into the results, e.g., when Ä is SUM. For
other types of aggregation functions, e.g., AVG, we need to use several queries and combine the
results. The first line of the WHERE clause specifies join predicates join on the fact table and
the dimension tables used for grouping. The second line specifies join predicates on the fact
table and the dimension table holding the data to be computed on, and ensures that we only get
one value for each fact. The following lines of the WHERE clause handle the grouping of facts.
The part before the “OR” handles the conservative grouping, while the remainder handles the
additional data in the liberal grouping.

Example 17 We implement the MO from the case study with only the Diagnosis and HbA1c%
dimensions, using the basic fact table design and (A,D) type dimension tables. We include
the text of the ancestors for readability. The resulting tables are seen in Table 2. When using
SQL to compute the weighted average of the HbA1c%, grouped by Low-level diagnoses seen
in Example 14, we get two SQL queries. One for computing the weighted sum and one for
computing the weighted count. The results of these two queries can then be combined into the
total weighted result as described in Example 14. The SQL statements are seen below.

SELECT D.Ancestor, SUM(H.EV * D.W), SUM(H.GCM * D.W)
FROM Fact F, Diagnosis D, HbA1C H
WHERE

F.DiagKey = D.DesID AND
F.HbA1Key = H.DesID AND H.AnsLevel = H.DesLevel AND
(D.AnsLevel = 0 OR (D.AnsLevel æ 0 AND D.AnsLevel = D.DesLevel))

GROUP BY D.Ancestor

A SQL IMPLEMENTATION 29

Fact DiagKey HbA1Key
0 5 6
1 3 7
2 4 8

Fact Table
AnsID DesID Ancestor AnsLevel DesLevel W

3 3 Ins. dep. diab. 0 0 1
4 4 Non-ins. dep. diab. 0 0 1
5 5 Diabetes 1 1 1
5 3 Diabetes 1 0 .8
5 4 Diabetes 1 0 .2

Diagnosis Dimension Table

AnsID DesId Ancestor AnsLevel DesLevel W EV GCM
6 6 Unknown 2 2 1 6.0 2
7 7 5.5 0 0 1 5.5 0
8 8 7 1 1 1 7.0 1
6 7 Unknown 2 0 .01 5.5 0
6 8 Unknown 2 1 .1 7.0 1

HbA1c% Dimension Table

Table 2: Relational Implementation of the Case Study

SELECT D.Ancestor, SUM(D.W)
FROM Fact F, Diagnosis D, HbA1C H
WHERE

F.DiagKey = D.DesID AND
F.HbA1Key = H.DesID AND H.AnsLevel = H.DesLevel AND
(D.AnsLevel = 0 OR (D.AnsLevel æ 0 AND D.AnsLevel = D.DesLevel))

GROUP BY D.Ancestor

If pre-aggregation is used, we also need tables to store the pre-aggregated values. These
should have the format of the denormalized fact table described above. If (A,D) type dimension
tables are used in the design, we can re-use these to access the aggregate tables. If “flat”
dimension tables are used, we need to construct new dimension tables with only the relevant
(higher category) columns [15] to access the aggregate tables.

